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YugaByte DB is a distributed, multi-model transactional database based on hybrid logical clocks. We found three
safety issues in YugaByte DB: two read skew bugs allowing logical data corruption, in healthy clusters and those
with clock skew, respectively; and the occasional loss of small numbers of inserted records during network par-
titions. These problems were fixed in version 1.2.0, and YugaByte DB now passes tests for snapshot isolation,
linearizable counters, sets, registers, and systems of registers, as long as clocks are well-synchronized. Our work
also uncovered performance and availability issues, including a leak allowing nodes to rapidly consume all avail-
able memory, and a race condition in leader election which could take down the entire cluster indefinitely. As
of 1.2.0, YugaByte has fixed all but one, minor issue with new client availability during failure. Users should be
aware that, by design, YugaByte may exhibit isolation anomalies, such as stale reads, when node clocks misbehave.
We suspect other anomalies may occur, but have not yet experimentally confirmed them. YugaByte has written a
companion piece to this report. This work was funded by YugaByte, and conducted in accordance with the Jepsen
ethics policy.

1 Errata

2019-04-10: The long fork test used in this analysis con-
tained a bug which caused it to (in many cases) fail to
identify long fork anomalies. We have re-checked Yu-
gaByte DB 1.1.15.0-b16 with a corrected checker, and
its long fork tests still pass.

2 Background

YugaByte DB is an open-source, multi-model, dis-
tributed database. It includes a sharded, transactional
document store wrapped by multiple interfaces sup-
porting YCQL (a query language derived from Cas-
sandra’s CQL), and SQL (presently in beta) APIs. In-
tended for high-performance systems of record, Yu-
gaByte DB is specifically designed for replication
across datacenters worldwide.

There are two classes of nodes in YugaByte DB: mas-
ters,1 and tablet servers. A small number of masters

control overall cluster topology, shard assignment, sys-
tem metadata, and so on. Tablet servers store the
actual data records, which are grouped into shards,
which YugaByte DB calls tablets. Both masters and
tablet servers use the Raft consensus algorithm to
replicate their state: masters form a single Raft group,
and each shard is backed by its own Raft group run-
ning on a subset of tablet servers.

In geographically replicated deployments, nodes in
each Raft group are spread across datacenters to pro-
vide redundancy, as well as fast local reads where lin-
earizability is not required.

2.1 Clocks

Within a shard, Raft ensures linearizability for
all operations which go through Raft’s log. How-
ever, for performance reasons, YugaByte DB does
not use Raft’s consensus for reads. Instead, it
cheats: reads return the local state from any Raft
leader immediately, using leader leases2 to ensure
safety. Using CLOCK_MONOTONIC for leases (instead of

1Where databases use “master” and “slave” terminology, Jepsen typically refers to those roles as “primary” and “secondary”. In this
case, “primary” and “secondary” more closely map to Raft leaders and followers which are another, orthogonal aspect of YugaByte DB’s
architecture. We’ve opted to use “master” here to avoid further confusion.

2Diego Ongaro’s 2014 dissertation on Raft describes a similar, lease-based safety mechanism for providing linearizable reads by using
heartbeat messages to extend leader leases, assuming bounded clock drift across servers.
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CLOCK_REALTIME) insulates YugaByte DB from some
classes of clock error, such as leap seconds.

Between shards, YugaByte DB uses a complex scheme
involving Hybrid Logical Clocks (HLCs): wall clocks
which are monotonically propagated with messages be-
tween nodes. YugaByte couples those clocks to the Raft
log, writing HLC timestamps to log entries, and using
those timestamps to advance the HLC on new leaders.
This technique eliminates several places where poorly
synchronized clocks could allow consistency violations.

YugaByte DB’s reliance on clocks for safety is some-
what surprising, as YugaByte’s Evaluation Guide says
clock skew is “bound to happen”, and YugaByte’s blog
characterizes NTP as unreliable:

… there’s still no guarantee that all nodes
will see the exact same time since inter-
net network latency is unpredictable. In
reality, nodes exhibit clock skew/drift even
with NTP turned on.

So, what exactly does YugaByte DB ask of its clocks?
YugaByte’s transaction documentation says there are
only two requirements for lease safety: bounded mono-
tonic drift rate between servers, and clocks that do not
freeze. YugaByte’s documentation did not specify how
high clock drift is allowed to be, or how long a pause
was considered a freeze.

For multi-shard transactions, a November 2018 slide
deck explains that multi-row reads of frequently up-
dated records rely on bounded clock skew, and the
YugaByte DB deploy checklist confirms that nodes
should run NTP. YugaByte’s documentation does
not provide required bounds on clock skew or drift,
but a previously undocumented command line flag
(--max_clock_skew_usec) has a default of 50millisec-
onds.

2.2 Cross-Shard Transactions

YugaByte DB provides cross-shard transactions3 with
a homegrown commit protocol based on two-phase com-
mit. An in-memory transaction coordinator creates

a durable transaction status record in a Raft group,
which allows the transaction to be resolved should the
coordinator fail. The coordinator then writes provi-
sional records to each shard, which are replicated in
those shards’ respective Raft groups. When all shards
have committed their provisional records, the coordina-
tor picks a commit timestamp and updates the status
record with that timestamp, marking the transaction
as complete. An asynchronous process goes on to pro-
mote provisional records to permanent ones, and as-
signs those permanent records the chosen transaction
timestamp.

Reads are somewhat more tricky. In order to obtain a
consistent snapshot, reads choose a recent timestamp t
(derived from their hybrid logical clock), and query all
shards, ignoring records with timestamps higher than
t. In order to execute a query at t, that shard waits to
ensure that it has a complete view of all transactions
up to t. If a read encounters a provisional record for
some key, the shard executing that part of the read
checks that transaction’s status record to determine
whether the transaction has been committed, or is still
pending.

Transaction coordinators are colocated with the leader
of the status record’s shard, to eliminate extra round
trips. Cross-shard update transactions therefore re-
quire four round trips (five, including clients). In the
general case, where the leaders of each Raft group
might be in different datacenters, YugaByte DB re-
quires at least three cross-datacenter round-trips per
cross-shard update transaction.

In the happy case, read transactions can be signifi-
cantly faster. Thanks to YugaByte DB’s use of leader
leases for reads, they can bypass normal Raft consen-
sus in each shard, and return the state from a Raft
leader without a round trip to its followers. In the un-
contested case, reads can complete in as few as one
cross-datacenter round trip. If a read encounters a pro-
visional record, it may add a second round-trip to con-
tact that transaction’s coordinator. If a tablet server
coordinating a read fails to select an appropriate times-
tamp, it have to restart the process (at most once for
each shard), which adds additional message delays.

3YugaByte uses “distributed transaction” to mean a transaction involving more than one shard. Since single-shard transactions are also
distributed across multiple nodes, we use “cross-shard transaction” in this report.

2

https://docs.yugabyte.com/latest/architecture/transactions/single-row-transactions/
http://users.ece.utexas.edu/~garg/pdslab/david/hybrid-time-tech-report-01.pdf
https://www.yugabyte.com/resources/yugabyte-db-enterprise-edition-evaluation-guide/
https://blog.yugabyte.com/6-signs-you-might-be-misunderstanding-acid-transactions-in-distributed-databases/
https://docs.yugabyte.com/latest/architecture/transactions/single-row-transactions/
https://postgresconf.org/system/events/document/000/000/823/2018-10-16_PostgresConf-YB-Workshop.pdf
https://postgresconf.org/system/events/document/000/000/823/2018-10-16_PostgresConf-YB-Workshop.pdf
https://docs.yugabyte.com/latest/deploy/checklist/
https://docs.yugabyte.com/latest/architecture/transactions/transactional-io-path/
https://docs.yugabyte.com/latest/architecture/transactions/single-row-transactions/#safe-timestamp-assignment-for-a-read-request
https://docs.yugabyte.com/latest/architecture/transactions/single-row-transactions/#safe-timestamp-assignment-for-a-read-request


Figure 1: Request flow for an uncontested multi-shard update transaction (black), and a concurrent read trans-
action (red). Coordinator, Shard 1, and Shard 2 are independent Raft groups. Within a Raft group, L and f
denote Raft leaders and followers.
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2.3 Consistency

YugaByte’s home page advertises “consistency”, “avail-
ability”, and “performance”, with “transactional
NoSQL” offering a “full spectrum of ACID compliance”.
As a key-value database, it promises “zero data loss” us-
ing “strongly consistent replication” and “ACID trans-
actions”. YugaByte claims that in contrast to Foun-
dationDB their product is “globally consistent across
regions”.

As an SQL database, YugaByte DB claims to be
“fully compatible with PostgreSQL”, providing “dis-
tributed ACID”multi-shard transactions—again using
“strongly consistent replication” which is “Jepsen test
suite verified”. In fact, YugaByte DB’s SQL offering is
still in beta, and there is no Jepsen test suite verify-
ing its behavior—the Jepsen tests YugaByte designed
only measured the YCQL interface. As far as ACID
goes, YugaByte DB supports only snapshot isolation;
serializable is under development.

In this analysis, we focus on the Cassandra-inspired
YCQL interface for YugaByte DB, leaving SQL for
later.

What safety properties does the YCQL interface pro-
vide? The Cassandra and MongoDB comparisons
claim that YugaByte DB prevents dirty reads, and
offers both linearizable and “timeline-consistent (aka
bounded staleness)” single-key reads. Linearizabil-
ity prevents stale reads, whereas timeline consistency
means that readers observe states consistent with
some total order of updates. Timeline consistency does
not constrain the order of reads: a single client could
observe, then fail to observe, any given update—even
updates that client previously made. Bounded stale-
ness allows stale reads up to δ seconds ago, but Yu-
gaByte makes no claims about what δ is.

Indices are “strongly consistent”—YugaByte’s engi-
neers say this means linearizable. Multi-key transac-
tions execute at snapshot isolation, and work on serial-
izable transactions is ongoing.

An important caveat: while YugaByte DB claims to be
a transactional NoSQL store, YCQL transactions are
limited to specific forms. In YCQL, there is no general
concept of an interactive or programmatic transaction.
Multi-key transactions can only be performed in two
ways:

1. A single SELECT query, whichmay cover multiple
keys, and

2. A BEGIN TRANSACTION statement containing
multiple updates.

One cannot perform two different read queries in the
same transaction; nor can one read and write state
in the same transaction. Select queries are limited
to a single table; there are no multi-table read trans-
actions. These constraints limit our ability to mea-
sure YugaByte DB’s underlying transactional protocol.
We cannot, for example, construct queries to observe
anti-dependency cycles between transactions. How-
ever, there are several tests we can perform.

3 Test Design

YugaByte designed and ran their own Jepsen test
suite prior to our collaboration. Using the YCQL in-
terface, that test suite measured linearizable single-
key and multi-key registers, inserts, counters, and
a snapshot-isolation test involving a simulated set
of bank accounts. It included several failure modes,
including tablet server and master crashes; single-
node, majority-minority, and non-transitive partitions;
as well as instantaneous and stroboscopic changes to
clocks, up to hundreds of seconds.

We reviewed and improved upon these tests, and added
new ones. Our workloads now include linearizable sets
and measurements of long fork, using both key-value
operations as well as secondary indices.

We also added failure modes for process pauses, ex-
panded the range of clock skew to hundreds of seconds,
and introduced randomized scheduling, mixtures of
different, overlapping failures, and periods for node re-
covery.

3.1 Counter

In the counter test, we create a single record with a
counter field, and execute concurrent increments and
reads of that counter. We look for cases where the
observed value is higher than the maximum possible
value, or lower than theminimumpossible value, given
successful and attempted increment operations.

3.2 Set

The set test inserts a sequence of unique records into
a table and concurrently attempts to read all of those
records back. We measure how long it takes for a
record to become durably visible, or, if it is lost, how
long it takes to disappear. A linearizable set should
make every inserted element immediately visible. A
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variant of the set test reads from secondary indices to
verify their consistency with the underlying table.

3.3 Long Fork

In snapshot isolated systems, reads should observe a
state consistent with a total order of transactions. A
long fork anomaly occurs when a pair of reads observes
contradictory orders of events on distinct records—for
instance, T1 observing record x before record y was cre-
ated, and T2 observing y before x. In the long fork test,
we insert unique rows into a table, and query small
groups of those rows, looking for cases where two reads
observe incompatible orders.

3.4 Bank

Another Jepsen staple is the bank test, which creates a
series of records, each representing a simulated bank
account, and transfers money between randomly se-
lected pairs of accounts. Since YugaByte DB’s YCQL
transactional system can’t express transactions which
both read and write accounts, this uses an in-place up-
date of transaction balances. We can’t enforce mini-
mum balances; we allow them to become arbitrarily
negative, and do not test transactional aborts. Lacking
generalized transactions, we cannot test the deletion
or creation of accounts: we use a fixed pool of account
records throughout.

3.5 Single-Key Linearizable

We verify the linearizability of operations on sin-
gle keys by performing randomized writes, reads,
and compare-and-set operations on individual records,
then checking that the resulting history is linearizable
using the Knossos linearizability checker.

3.6 Multi-Key Linearizable

To evaluate the correctness of multi-key transactions,
we generalize the single-key linearizable test to trans-
actions over a small set of keys. Because YugaByte DB
has only limited support for transactions, we can’t eval-
uate this behavior in general—we cannot, for instance,
generate transactions which both read and write keys.
We can, however, test transactions withmultiple reads,
and transactions with multiple writes.

4 Results

We evaluated YugaByte DB on a five-node Debian
Jessie cluster, with replication factor 3. Three nodes
ran masters, and all five ran tablet servers. We tested
versions 1.1.9, 1.1.10, 1.1.11, 1.1.13.0-b2, and 1.1.15.0-
b16. Prior to publication, YugaByte also tested 1.2.0.0-
b7. We’ll start by discussing performance issues, in-
cluding reduced availability and resource consumption,
as well as a race condition in table creation. Then we’ll
present more severe bugs, including cluster-wide stalls
and memory leaks. Finally, we’ll cover safety viola-
tions: read skew including logical state corruption, lost
inserts, and behavior under clock skew.

4.1 YCQL Requests Never Time Out

In our tests, we used YugaByte’s fork of the Cassan-
dra Java client, which uses a 12-second timeout by de-
fault. That timeout was chosen by the Cassandra de-
velopers to be slightly longer than Cassandra’s default
server timeout of 10 seconds. In most Jepsen tests of
leader-based replication systems, we observe a burst
of timeouts when a network partition or other fault oc-
curs, as nodes partitioned from the leader wait for re-
sponses to their queries which will never arrive. After
a few seconds, those isolated nodes typically declare
themselves unavailable for consensus operations, and
requests which would have required a leader will fail
immediately, rather than timing out.

YugaByte DB 1.1.10 behaved differently: timeouts per-
sisted through the entire duration of a network parti-
tion, even if the partition lasted for 500+ seconds.

This could pose performance risks to user-facing sys-
tems: a network partition could cause clients to get
backed up, waiting for requests that won’t complete un-
til the partition is resolved. That could lead to elevated
latencies or queue overflows in upstream systems, and
prevent clients frommoving on to other requests which
could succeed.

This occurred because the RPC mechanism in Yu-
gaByte DB’s YCQL interface internally retried queries
forever, rather than giving up and returning an error
to the client. YugaByte has fixed this issue in version
1.1.13; the new default server timeouts are 60 seconds.

4.2 Repeated Log Messages

During network partitions, one or more tablet servers
could find themselves unable to reach the current
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leader of the master cluster. When this occurred, those
nodes could log upwards of 250,000 error messages per
minute, all identical:

Leader Master has changed, re-trying...

On filesystems without compression, this could con-
sume roughly 40 MB of disk per minute, which makes
debugging more challenging, and could fill up the disk.
We found this issue in 1.1.10, and YugaByte fixed it in
1.1.13.

4.3 Race Condition in Table Creation

When executing concurrent CREATE TABLE ... IF
NOT EXISTS commands, YugaByte DB 1.1.10 could re-
turn successfully before the table was actually created;
subsequent operations involving that table could throw
“Table Not Found” errors. This occurred when Yu-
gaByte DB observed another client in the process of
creating that same table; it would return immediately,
rather than waiting for the table to be completely cre-
ated. YugaByte fixed this issue in 1.1.15.

4.4 Connecting to Isolated Servers

When a Cassandra JVM client connects to any server,
it checks the system.peers table to identify the other
nodes in the cluster. This request is synchronous; if
it times out or fails, it blocks the client from perform-
ing any other requests. Since YugaByte forked Cassan-

dra’s client code for use with YugaByte DB, the YCQL
JVM client makes the same request.

Unlike Cassandra, YugaByte DB stores the
system.peers table in the master Raft group. This
means that a server must be able to reach a master
node, which in turn must able to communicate with a
majority of masters, in order to satisfy this initial re-
quest. If enoughmasters are down, or partitioned from
one another, or partitioned from a tablet server, JVM
clients will be unable to connect to that tablet server
until conditions improve. This reduces YugaByte DB’s
availability: that tablet could be writable, or at least
readable, but if it can’t reach the masters, only clients
with an existing connection will be able to perform
work. As clients fail over from other nodes, or rotate
connections for performance reasons, more and more
clients can find themselves stuck.

Since clients cache the peers table locally, stale reads
of the system.peers table are just fine for this use case.
We recommended that YugaByte DB cache this table
on every node to improve availability.

4.5 Slow Recovery from Network Partitions

After a network partition ended, YugaByte DB gener-
ally took 10–30 seconds to recover to a healthy state.
However, sometimes it could take 60 seconds or more
to recover: a few operations might be able to complete
soon after the end of a partition, but resuming normal
throughput took significantly longer.

Figure 2: After network partitions (grey regions), YugaByte DB could take 30–50 seconds to recover.
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For instance, in this set test, we attempt a mixture of
single-row inserts and table-wide reads, while creat-
ing and healing network partitions which always leave
a majority of the cluster connected. Partitions lasted
for 60 seconds, followed by 60 seconds of total network
connectivity, then a new partition. Recovery to a com-
pletely healthy state could take 20–60 seconds.

YugaByte has been exploring ways to speed up recov-
ery, by making optimizations to elections and timeouts.
In our testing, version 1.1.15.0-b16 typically recovers
from partitions in ~25 seconds, and cases of persistent
elevated latencies are significantly less frequent than

in version 1.1.9.

4.6 Indefinite Master Stalls

In many of our network partition tests, YugaByte DB
1.1.9.0 through 1.1.13.0-b2 exhibited long windows of
unavailability—despite total network connectivity and
all nodes being online. Normal recovery times for Yu-
gaByte DB were on the order of tens of seconds, but
in some cases, even 5 minutes without any faults was
insufficient for recovery.

Figure 3: After an initial sequence of network partitions, the cluster is completely unavailable for 300 seconds;
additional partitions resolve the outage.

Unusually, additional network partitions could cause
the cluster to recover. We were perplexed by this phe-
nomenon, until YugaByte identified that some master
nodes had gotten stuck in a way which made them ap-
pear healthy to other nodes (thus precluding a leader
election), but prevented them from processing any re-
quests. In this particular test, nodes n1 and n2 both
got stuck, but a third master node, n3, remained alive.
Node n3 was elected after the second series of network
partitions, and operations resumed.

YugaByte traced this problem to multiple race condi-
tions in the leader election process for master nodes.
For example, when becoming a leader, a master would
abort and block for all previously created tasks. How-
ever, concurrently added tasks might not receive the
message to abort, causing the master to block on those
tasks indefinitely. This issue was fixed in version

1.1.15.

4.7 Memory Leaks

In our tests of YugaByte DB 1.1.10 through 1.1.13.0-b2,
with verbose logging enabled, roughly one master per
day encountered a catastrophic memory leak, allocat-
ing several gigabytes per second, until the OOM killer
(or operators) intervened. In one case, the process allo-
cated 60 GB and remained stable.

These allocations occurred despite a configured
--memory_limit_hard_bytes of 4 GB, in scenarios
with network partitions, process pauses, and even
with no failures at all. We identified no obvious cor-
relation with data volume or throughput; tests with
only a handful of integer values could still result in
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memory leaks. Curiously, these leaks did not appear
in tcmalloc’s allocation statistics.

Valgrind identified libbacktrace as the cause of this
leak, and YugaByte believes the problem stems from a
thread safety bug in libbacktrace. As of 1.1.15.0-b16,
YugaByte DB now uses Google’s glog for stack traces
instead, and we have not observed memory leaks since.

4.8 Frequent Read Skew

Our first test run with 1.1.9 revealed a significant prob-
lem: under normal operating conditions, transactional

reads in YugaByte DB frequently exhibited read skew:
seeing part, but not all, of other transactions’ effects.
In the bank test, for instance, reads of a set of accounts
containing $100 total could return $102, $85, or $180.
Moreover, those totals would drift over time, suggest-
ing that skewed reads affected read-write transactions,
even when those transactions wrote every value they
read.

For example, in this test, the total balance started
at $100, but quickly dropped to $95, then drifted as
high as $154. A snapshot isolated system would never
change the total value of accounts, and observe $100
in every read transaction.

Figure 4: Plot of the total of all accounts over time. In a snapshot-isolated system, every total should be exactly
100.

As it turns out, YugaByte had independently discov-
ered the cause of this problem: a race condition affect-
ing concurrent multi-shard update transactions. Con-
sider two transactions T1 and T2, which both interact
with key k. T1 writes a provisional record for k, which
is observed by T2. T2 goes to checks T1’s transaction
status record, but before its request arrives, T1 com-
mits, promotes its provisional records to normal ones,
and, having completed, deletes the T1 status record.
T2’s request for that status record finds nothing, which
T2 takes to mean that T1 aborted. T2 then ignores T1’s
committed write of k, but could observe other keys T1
wrote, allowing read skew.

YugaByte included a fix for this issue in version 1.1.10;
we have not observed read skew in any later test.4

4.9 Rare Lost Inserts

Under rare conditions involving multiple network par-
titions, YugaByte DB 1.1.10 could discard acknowl-
edged writes, even if they had been visible to other
reads for tens of seconds. We observed this issue in
the set test, which inserts unique numbers as distinct
rows, and concurrently reads back every row, looking
for numbers whichwere acknowledged before that read
began, but were absent from the read itself.

In this particular test, element 427 was written suc-
cessfully ~90 seconds into the test, right as a net-
work partition was ending. 427 was present in every
subsequent read, from 98.4 seconds to 141.1 seconds,

4So long as clocks are well-behaved.
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when the cluster happened to be recovering from a net-
work partition (which ended roughly 15 seconds prior).
From 142 seconds through the end of the test, element
427 (and only 427) was missing from every read.

This issue was rare, and difficult to reproduce; we en-
countered only a handful of lost writes in tens of hours
of testing. Each instance of data loss involved a parti-
tion resolving, or the cluster recovering from an earlier
partition.

YugaByte DB changes the nodes participating in each
Raft cluster dynamically, removing nodes which have
been inaccessible for some time, adding new nodes to
preserve the desired number of replicas, and rotat-
ing membership as a part of ongoing load balancing.
YugaByte believes that when a network partition oc-
curred concurrently with amembership change (which
happens automatically in response to network parti-
tions), writes could be replicated to some (but not all)
nodes. During a subsequent leader election, a leader
could come to power without certain writes. Normally,

the Raft algorithm prohibits this. However, YugaByte
DB extends Raft by introducing the concepts of voting
and non-votingmembers—and an implementation bug
allowed all Raft members, not just voting members, to
be counted towards the majority acknowledgement re-
quired for commit. A fix is available in 1.1.13.

4.10 Read Skew Under Clock Skew

When we introduced POSIX clock fluctuations larger
than max_clock_skew_usec during bank tests, they
exhibited fluctuations in the total balance of all ac-
counts, which should be constant in snapshot-isolated
systems. These were not merely stale reads: clients ob-
served a state of the system that should never have ex-
isted at any time. Moreover, this read skew appeared
to persist after initial fluctuations, which suggests that
transfer transactions observed an inconsistent view of
the system and propagated that state back into the
database, corrupting logical state.

Figure 5: With clock skew, the total of all accounts can fluctuate, settling for a time on new totals.

This issue turned out to be a bug in a YugaByte DB
locking system. LockBatch, a type of lock used to
ensure transactions don’t execute concurrently, imple-
mented a MoveFrom function which failed to transfer
the lock’s status field. If a LockBatch lock could not
be acquired within its deadline, YugaByte DB would
fail to notice that the lock hadn’t actually been ac-
quired, assume the lock was held, and proceed to exe-
cute critical sections concurrently. This issue was fixed
in 1.2.0.0-b7.

4.11 Consistency Errors Under Clock Skew

In the presence of poorly synchronized clocks, Yu-
gaByte DB still exhibits some transactional anomalies.
We found stale reads in both set tests and multi-key
transactions.

For instance, in this set index test involving clock skew
as well as tserver crashes & pauses, YugaByte DB al-
lowed stale reads of 114 out of 20344 inserts, with the
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worst taking 136 milliseconds to become visible. Set
tests use single-key insert transactions, but reads in-
volve selectingmultiple records across different shards,
so HLC clock skew may have played a role.

We also observed nonlinearizable histories in multi-
key linearizability tests. For instance, in this test, pro-
cess 8 performs a write [:w 1 3], setting key 1 to 3.
Process 2 then performs a read [[:r 2 1] [:r 1 2]:
it saw the value of key 2 as 1, and the value of key 1
as 2. This is impossible in a linearizable system: after
the write completes, key 1 should have the value 3 un-
til some other update occurred, but no other operations
transpired during or before the read of 2. While this
particular test involved multiple types of failure, we
can reliably reproduce nonlinearizable histories with
only clock skew, and no partitions, crashes, or pauses.

These behaviors are intrinsic to YugaByte DB’s archi-
tecture, and fall outside the assumptions YugaByte DB
makes about the hardware it runs on. YugaByte does
not plan to change these behaviors.

We have yet to observe anomalies due to clock skew
in single-key counters, or in single-key linearizable
tests—perhaps because those workloads do not involve
multi-shard transactions, and because our tests do not
affect CLOCK_MONOTONIC.

№ Summary Event Required Fixed in

798 Concurrent create-table calls can return before table created None 1.1.15
821 Slow/unreliable recovery from network partitions Partition 1.1.15
822 CQL requests never time out Partition 1.1.13
823 Repeated log messages Partition 1.1.13
824 Rare loss of acknowledged inserts Partition 1.1.13
862 Memory leak None 1.1.15
864 Clients can’t connect to partitioned nodes Master unavailable Unresolved
886 Indefinite unavailability Master elections 1.1.15
894 Frequent read skew & data corruption None 1.1.10
975 Read skew & data corruption Clock skew 1.2.0

5 Discussion

We observed three safety issues in YugaByte DB. The
first read skew issue is a severe violation of trans-
actional guarantees, and occurred continuously in
healthy clusters. The loss of acknowledged inserts was
significantly rarer, and affected only small numbers of
updates. Read skew and data corruption under clock
skew was a serious problem, but required large clock
offsets. These issues were resolved in 1.1.10, 1.1.13,
and 1.2.0, respectively.

Version 1.2.0 also includes significant availability im-
provements, fixing a sporadic, fast-growing memory
leak, master nodes getting stuck after elections, and
improving recovery time from network partitions. The
only issue which remains unaddressed is a relatively
minor problem involving clients connecting to parti-
tioned nodes.

YugaByte’s engineers were quick to address safety and
availability issues, and we’re pleased to see the results
of their hard work.

5.1 Recommendations

YugaByte DB 1.1.9’s transactional isolation was badly
broken: under normal conditions, healthy clusters ex-
hibited frequent read skew, and those skewed reads
could be written back to the database, corrupting log-
ical state. YugaByte DB 1.1.10 could, under rare
conditions involving multiple leader elections due to
e.g. network partitions, lose a handful of committed
writes. Version 1.1.15 also exhibited read skew and
data corruption during clock skew. We are unaware
of workarounds for these issues, and recommend that
users upgrade to 1.2.0 or higher as quickly as possible.
1.2.0 also addresses serious availability issues.

In YugaByte DB, master nodes play a critical role. In
some sharded systems, single-shard transactions can
continue so long as a shard remains alive, but in Yu-
gaByte DB, a shard must be connected to a healthy
group of masters in order for new clients to make
progress. We recommend that users keep this in mind
when making choices about node and network redun-
dancy.
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In the presence of clock skew on the order of hun-
dreds of seconds, YugaByte DB can exhibit stale
reads, and, we suspect, other uncharacterized anoma-
lies. YugaByte already recommends the use of NTP,
but, as YugaByte notes, NTP is not necessarily reli-
able. As a matter of general principle, we encour-
age users to monitor and alert on their clocks to
help limit the impact of anomalies. Users should
set --max_clock_skew_usec to comfortably enclose
the clock skew they observe; YugaByte recommends a
value twice as high as observed clock skew.

Using --disable_clock_sync_error may make it
easier to detect and limit the impact of clock skew is-
sues, but note that the default threshold for shutting
down is a hundred seconds—three orders of magnitude
larger than the safety envelope of 50 milliseconds. We
also recommend using physical hardware where possi-
ble; virtual machines can introduce additional sources
of clock error. In cloud environments, using the cloud
provider’s NTP servers may offer improved bounds on
clock skew.

5.2 General Comments

Without clock skew, YugaByte DB 1.1.15 passed our
tests for multi-key strict serializability, single-key lin-
earizability, snapshot isolation (including bank and
long fork), counters, and linearizable inserts + reads.
However, users should keep in mind that YugaByte’s
transactionalmodel is, at present, only intended to pro-
vide snapshot isolation plus single-key linearizability.
The fact that our tests for strict serializability passed
may be due to our inability to expressmixed read-write
queries in YCQL, or due to performance limitations in
our test design: checking longer histories can be ex-
tremely slow.

YugaByte DB has updated their documentation and
marketing material. The deployment checklist now of-
fers a comprehensive discussion of clock skew and drift
tolerance, and the relevant command line parameters.
Clock skew options are now a part of the standard CLI
documentation. The SQL page no longer claims that
YSQL is verified by Jepsen; that claim should only have
applied to the YCQL interface.

Jepsen is not a good measure of database performance;
we evaluate pathological workloads with fixed concur-
rency, rather than realistic workloads with fixed re-
quest rates. In particular, we note that YugaByte DB
is intended for deployment across multiple datacen-
ters, but our tests used uniformly low-latency networks
between all nodes, except for failure cases.

Finally, we should note that Jepsen takes an experi-
mental approach to safety verification: we can prove
the presence of bugs, but not their absence. While
we make extensive efforts to find problems, we cannot
prove the correctness of any distributed system.

5.3 Future Work

We have not yet seen stale reads in single-key lineariz-
able tests. We suspect this is because YugaByte DB
relies on clocks for safety in two separate mechanisms:

1. Leader leases, which use CLOCK_MONOTONIC to
allow Raft leaders to service reads immediately,
rather than waiting for the standard round-trip.

2. Multi-shard transactions, which use
CLOCK_REALTIME as an input to their hybrid log-
ical clocks to obtain consistent snapshots across
multiple shards.

Our tests only affect CLOCK_REALTIME, as
CLOCK_MONOTONIC can’t be changed on Linux systems.
We tried using libfaketime, an LD_PRELOAD shim, to
simulate drift in CLOCK_MONOTONIC, but were unable
to complete this work before publication. It’s likely
that our tests missed issues relating to leader leases,
and we think additional testing is warranted.

YugaByte DB’s use of wall clocks for snapshot isolation
suggests that when those clocks are poorly synchro-
nized, we should observe some sort of transactional
anomalies. We found three classes of failing tests un-
der clock skew near the end of our testing process: read
skew in bank tests, stale reads in set tests, and non-
linearizable anomalies in multi-register tests. After
our testing work together, but prior to the publication
of this report, YugaByte traced the bank test issue to
a bug in LockBatch. We’d like to thoroughly explore
bank test behavior with that fix, and investigate multi-
register failures in more detail: are anomalies now lim-
ited to stale reads, or can YugaByte DB violate snap-
shot isolation as well?

We would also like to explore the relationship be-
tween clock skew and --max_clock_skew_usec: is
it a tight bound on allowable clock skew, or is
there some margin of safety? How well does
--disable_clock_sync_error work, and what kinds
of anomalies can go unnoticed?

The tests we wrote for YugaByte DB are less complete
than those we’ve performed against similar systems
in other Jepsen analyses. We have no way to trans-
actionally query multiple tables in the bank test, so
we measure multiple keys in the same table. We can-
not combine read and write transactions in multi-key
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linearizability tests, so we stick to strictly read-only or
write-only queries. We cannot express queries which
would let us observe predicate anti-dependency cy-
cles. Since YugaByte DB’s YCQL interface proscribes
these kinds of queries, there is no safety risk if they
don’t work correctly. However, we cannot speak to
YugaByte DB’s transactional isolation mechanisms in
general—we can only describe how they handle the lim-
ited queries we can express in YCQL.

Once YugaByte DB’s SQL layer is ready, we would
like to return and test more generalized transactions.
Both YSQL and YCQL are built on the same underly-
ing transactional mechanism, so the YCQL tests give
us some degree of confidence in the behavior of YSQL
as well. However, YSQL will let us write the transac-
tions we need to check the transactional layer more rig-
orously. There’s also the possibility of safety issues in
YSQL itself, or in how it uses the underlying transac-
tional layer. We look forward to exploring its behavior.

We have not explored filesystem or disk issues, both
of which deserve attention. We also ran masters and
tablet servers on the same nodes, which introduced a
degree of coupling between their failure modes. Fu-
ture work could explore partitions between two mas-
ters, between two tablet servers, or between masters
and tablet servers, independently.

Finally, YugaByte DB has no formal model for the cor-
rectness of its 2PC-based transactional system, conflict
detection, or coupling of read times to Raft. These sys-
tems interact in complex and subtle ways; proofs and
model-checking could help us gain confidence in Yu-
gaByte DB’s correctness.

Going forward, YugaByte plans to complete their on-
going work on serializable isolation and their SQL in-
terface, allowing YugaByte DB to serve general OLTP
workloads in a linearly-scalable fashion. YugaByte
also plans to continue performance tuning, to improve
fault recovery and availability during network parti-
tions.

This work was funded by YugaByte, and conducted
in accordance with the Jepsen ethics policy. We
wish to thank the YugaByte team for their invaluable
assistance—especially Timur Yusupov, Mikhail Bautin,
Amitanand Aiyer, Sergei Politov, Ravi Murthy, Karthik
Ranganathan, and Kannan Muthukkaruppan. Jessie
Frazelle helped with building libfaketime, and Kit
Patella made improvements to the core Jepsen library in
support of this work. We are also grateful to Peter Bailis,
Diego Ongaro, and Peter Alvaro for their comments on
theoretical questions. Finally, thanks to Marc Hedlund
and Kelly Sommers for their comments on early drafts.
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